Nuprl Lemma : rem_bounds_1
∀[a:ℕ]. ∀[n:ℕ+].  ((0 ≤ (a rem n)) ∧ a rem n < n)
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+, 
nat: ℕ, 
less_than: a < b, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
and: P ∧ Q, 
remainder: n rem m, 
natural_number: $n
Definitions unfolded in proof : 
prop: ℙ, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
guard: {T}, 
nequal: a ≠ b ∈ T , 
nat_plus: ℕ+, 
nat: ℕ, 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
le: A ≤ B, 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
or: P ∨ Q, 
decidable: Dec(P), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
less_than: a < b, 
less_than': less_than'(a;b), 
top: Top, 
true: True, 
squash: ↓T, 
bfalse: ff, 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
int_nzero: ℤ-o, 
subtract: n - m
Lemmas referenced : 
decidable__lt, 
equal_wf, 
less_than_irreflexivity, 
le_weakening, 
less_than_transitivity1, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
istype-void, 
eqff_to_assert, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
less_than_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
false_wf, 
eq_int_wf, 
assert_of_eq_int, 
equal-wf-base, 
less_than'_wf, 
iff_weakening_equal, 
subtype_rel_self, 
nequal_wf, 
subtype_rel_sets, 
rem-zero, 
true_wf, 
squash_wf, 
not-lt-2, 
minus-zero, 
minus-add, 
add-commutes, 
condition-implies-le, 
le-add-cancel, 
zero-add, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
not-equal-2, 
decidable__int_equal, 
nat_wf, 
member-less_than, 
nat_plus_wf
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
intEquality, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
natural_numberEquality, 
lambdaFormation, 
hypothesis, 
rename, 
setElimination, 
remainderEquality, 
isectElimination, 
lemma_by_obid, 
because_Cache, 
hypothesisEquality, 
dependent_functionElimination, 
lambdaEquality, 
independent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
unionElimination, 
extract_by_obid, 
independent_pairFormation, 
lessCases, 
Error :remPositive, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
equalityElimination, 
Error :isect_memberFormation_alt, 
axiomSqEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :universeIsType, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
Error :dependent_pairFormation_alt, 
Error :equalityIsType4, 
baseApply, 
closedConclusion, 
applyEquality, 
Error :lambdaEquality_alt, 
promote_hyp, 
instantiate, 
cumulativity, 
Error :functionIsType, 
Error :equalityIsType1, 
int_eqReduceTrueSq, 
int_eqReduceFalseSq, 
remainderBounds1, 
productEquality, 
universeEquality, 
setEquality, 
addLevel, 
minusEquality, 
voidEquality, 
addEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((0  \mleq{}  (a  rem  n))  \mwedge{}  a  rem  n  <  n)
Date html generated:
2019_06_20-AM-11_24_03
Last ObjectModification:
2018_10_15-PM-03_00_39
Theory : arithmetic
Home
Index