Nuprl Lemma : less_than_transitivity1
∀[x,y,z:ℤ].  (x < z) supposing ((y ≤ z) and x < y)
Proof
Definitions occuring in Statement : 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
or: P ∨ Q, 
prop: ℙ, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
le-iff-less-or-equal, 
le_wf, 
member-less_than, 
less_than_wf, 
less_than_transitivity, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
unionElimination, 
isectElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
independent_functionElimination
Latex:
\mforall{}[x,y,z:\mBbbZ{}].    (x  <  z)  supposing  ((y  \mleq{}  z)  and  x  <  y)
Date html generated:
2019_06_20-AM-11_22_48
Last ObjectModification:
2018_09_10-PM-01_14_11
Theory : arithmetic
Home
Index