Nuprl Lemma : imax_nat

[a:ℤ]. ∀[b:ℕ].  (imax(a;b) ∈ ℕ)


Proof




Definitions occuring in Statement :  imax: imax(a;b) nat: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  le: A ≤ B sq_stable: SqStable(P) bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A decidable: Dec(P) subtract: m top: Top less_than': less_than'(a;b)
Lemmas referenced :  imax_wf le_wf squash_wf true_wf imax_unfold subtype_rel_self iff_weakening_equal le_int_wf eqtt_to_assert assert_of_le_int sq_stable__le eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf istype-le decidable__le istype-false not-le-2 condition-implies-le minus-add istype-void minus-one-mul add-swap minus-one-mul-top add-commutes zero-add add_functionality_wrt_le add-associates add-zero le-add-cancel istype-nat istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :dependent_set_memberEquality_alt,  extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename hypothesis applyEquality Error :lambdaEquality_alt,  imageElimination equalityTransitivity equalitySymmetry Error :universeIsType,  Error :inhabitedIsType,  because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed instantiate universeEquality independent_isectElimination productElimination independent_functionElimination Error :lambdaFormation_alt,  unionElimination equalityElimination Error :dependent_pairFormation_alt,  Error :equalityIstype,  promote_hyp dependent_functionElimination cumulativity voidElimination independent_pairFormation addEquality Error :isect_memberEquality_alt,  minusEquality axiomEquality Error :isectIsTypeImplies

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbN{}].    (imax(a;b)  \mmember{}  \mBbbN{})



Date html generated: 2019_06_20-AM-11_32_45
Last ObjectModification: 2019_01_02-PM-03_55_26

Theory : bool_1


Home Index