Nuprl Lemma : reg-seq-mul_wf
∀[x,y:ℕ+ ⟶ ℤ]. (reg-seq-mul(x;y) ∈ ℕ+ ⟶ ℤ)
Proof
Definitions occuring in Statement :
reg-seq-mul: reg-seq-mul(x;y)
,
nat_plus: ℕ+
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
reg-seq-mul: reg-seq-mul(x;y)
,
nat_plus: ℕ+
,
nequal: a ≠ b ∈ T
,
not: ¬A
,
implies: P
⇒ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
all: ∀x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
Lemmas referenced :
nat_plus_wf,
equal_wf,
int_formula_prop_wf,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_term_value_mul_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_and_lemma,
intformless_wf,
itermVar_wf,
itermConstant_wf,
itermMultiply_wf,
intformeq_wf,
intformand_wf,
satisfiable-full-omega-tt,
nat_plus_properties
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lambdaEquality,
divideEquality,
multiplyEquality,
applyEquality,
hypothesisEquality,
because_Cache,
natural_numberEquality,
sqequalHypSubstitution,
setElimination,
thin,
rename,
hypothesis,
lemma_by_obid,
isectElimination,
lambdaFormation,
independent_isectElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality
Latex:
\mforall{}[x,y:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}]. (reg-seq-mul(x;y) \mmember{} \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{})
Date html generated:
2016_05_18-AM-06_48_54
Last ObjectModification:
2016_01_17-AM-01_45_39
Theory : reals
Home
Index