Nuprl Lemma : reg-seq-mul_wf

[x,y:ℕ+ ⟶ ℤ].  (reg-seq-mul(x;y) ∈ ℕ+ ⟶ ℤ)


Proof




Definitions occuring in Statement :  reg-seq-mul: reg-seq-mul(x;y) nat_plus: + uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T reg-seq-mul: reg-seq-mul(x;y) nat_plus: + nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top and: P ∧ Q prop:
Lemmas referenced :  nat_plus_wf equal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf itermMultiply_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_plus_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality divideEquality multiplyEquality applyEquality hypothesisEquality because_Cache natural_numberEquality sqequalHypSubstitution setElimination thin rename hypothesis lemma_by_obid isectElimination lambdaFormation independent_isectElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (reg-seq-mul(x;y)  \mmember{}  \mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})



Date html generated: 2016_05_18-AM-06_48_54
Last ObjectModification: 2016_01_17-AM-01_45_39

Theory : reals


Home Index