Nuprl Lemma : rminus-radd

[r,s:ℝ].  (-(r s) ((r(-1) s) (r(-1) r)))


Proof




Definitions occuring in Statement :  req: y rmul: b rminus: -(x) radd: b int-to-real: r(n) real: uall: [x:A]. B[x] minus: -n natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rminus_wf radd_wf rmul_wf int-to-real_wf real_wf radd_comm req_functionality rminus-as-rmul req_weakening rmul-distrib1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis minusEquality natural_numberEquality independent_functionElimination sqequalRule isect_memberEquality because_Cache independent_isectElimination productElimination

Latex:
\mforall{}[r,s:\mBbbR{}].    (-(r  +  s)  =  ((r(-1)  *  s)  +  (r(-1)  *  r)))



Date html generated: 2016_05_18-AM-06_52_44
Last ObjectModification: 2015_12_28-AM-00_30_41

Theory : reals


Home Index