Step
*
2
2
4
of Lemma
rv-compass-compass-lemma
1. a : ℝ^2
2. b : ℝ^2
3. c : ℝ^2
4. d : ℝ^2
5. a ≠ c
6. ∃p,q:ℝ^2. (((d(a;b) = d(a;p)) ∧ (d(c;d) = d(c;q))) ∧ (d(c;p) ≤ d(c;d)) ∧ (d(a;q) ≤ d(a;b)))
7. u : ℝ^2
8. v : ℝ^2
9. ||u|| = d(a;b)
10. ||u - c - a|| = d(c;d)
11. ||v|| = d(a;b)
12. ||v - c - a|| = d(c;d)
13. ((d(a;b)^2 - d(c;d)^2) + ||c - a||^2^2 < (r(4) * ||c - a||^2 * d(a;b)^2))
⇒ (r2-left(u;c - a;λi.r0) ∧ r2-left(v;λi.r0;c - a))
14. ∀x,y,z:ℝ^2. (d(x;y) = d(x;z)
⇐⇒ ||z - x|| = d(x;y))
15. ab=av + a
⊢ ||v + a - c|| = d(c;d)
BY
{ ((Assert req-vec(2;v + a - c;v - c - a) BY
((RepUR ``req-vec real-vec-add real-vec-sub`` 0 THEN Auto) THEN nRNorm 0 THEN Auto))
THEN RWO "-1" 0
THEN Auto) }
Latex:
Latex:
1. a : \mBbbR{}\^{}2
2. b : \mBbbR{}\^{}2
3. c : \mBbbR{}\^{}2
4. d : \mBbbR{}\^{}2
5. a \mneq{} c
6. \mexists{}p,q:\mBbbR{}\^{}2. (((d(a;b) = d(a;p)) \mwedge{} (d(c;d) = d(c;q))) \mwedge{} (d(c;p) \mleq{} d(c;d)) \mwedge{} (d(a;q) \mleq{} d(a;b)))
7. u : \mBbbR{}\^{}2
8. v : \mBbbR{}\^{}2
9. ||u|| = d(a;b)
10. ||u - c - a|| = d(c;d)
11. ||v|| = d(a;b)
12. ||v - c - a|| = d(c;d)
13. ((d(a;b)\^{}2 - d(c;d)\^{}2) + ||c - a||\^{}2\^{}2 < (r(4) * ||c - a||\^{}2 * d(a;b)\^{}2))
{}\mRightarrow{} (r2-left(u;c - a;\mlambda{}i.r0) \mwedge{} r2-left(v;\mlambda{}i.r0;c - a))
14. \mforall{}x,y,z:\mBbbR{}\^{}2. (d(x;y) = d(x;z) \mLeftarrow{}{}\mRightarrow{} ||z - x|| = d(x;y))
15. ab=av + a
\mvdash{} ||v + a - c|| = d(c;d)
By
Latex:
((Assert req-vec(2;v + a - c;v - c - a) BY
((RepUR ``req-vec real-vec-add real-vec-sub`` 0 THEN Auto) THEN nRNorm 0 THEN Auto))
THEN RWO "-1" 0
THEN Auto)
Home
Index