Nuprl Lemma : rv-congruent-sym

[n:ℕ]. ∀[a,b:ℝ^n].  ab=ba


Proof




Definitions occuring in Statement :  rv-congruent: ab=cd real-vec: ^n nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rv-congruent: ab=cd subtype_rel: A ⊆B prop: implies:  Q
Lemmas referenced :  real-vec-dist-symmetry req_witness real-vec-dist_wf real_wf rleq_wf int-to-real_wf real-vec_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule applyEquality lambdaEquality setElimination rename setEquality natural_numberEquality independent_functionElimination isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbR{}\^{}n].    ab=ba



Date html generated: 2016_10_26-AM-10_28_05
Last ObjectModification: 2016_09_25-PM-02_08_20

Theory : reals


Home Index