Nuprl Lemma : rv-congruent_functionality

n:ℕ. ∀a1,a2,b1,b2,c1,c2,d1,d2:ℝ^n.
  (req-vec(n;a1;a2)  req-vec(n;b1;b2)  req-vec(n;c1;c2)  req-vec(n;d1;d2)  (a1b1=c1d1 ⇐⇒ a2b2=c2d2))


Proof




Definitions occuring in Statement :  rv-congruent: ab=cd req-vec: req-vec(n;x;y) real-vec: ^n nat: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q rv-congruent: ab=cd member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q subtype_rel: A ⊆B uimplies: supposing a uiff: uiff(P;Q)
Lemmas referenced :  rv-congruent_wf req-vec_wf real-vec_wf nat_wf real-vec-dist_wf real_wf rleq_wf int-to-real_wf req_functionality real-vec-dist_functionality req-vec_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality natural_numberEquality sqequalRule because_Cache independent_isectElimination productElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a1,a2,b1,b2,c1,c2,d1,d2:\mBbbR{}\^{}n.
    (req-vec(n;a1;a2)
    {}\mRightarrow{}  req-vec(n;b1;b2)
    {}\mRightarrow{}  req-vec(n;c1;c2)
    {}\mRightarrow{}  req-vec(n;d1;d2)
    {}\mRightarrow{}  (a1b1=c1d1  \mLeftarrow{}{}\mRightarrow{}  a2b2=c2d2))



Date html generated: 2016_10_26-AM-10_28_49
Last ObjectModification: 2016_09_25-PM-01_06_53

Theory : reals


Home Index