Nuprl Lemma : rv-five-segment-lemma

n:ℕ. ∀A,B,C,D:ℝ^n. ∀t:ℝ.
  ((t ∈ (r0, r1))
   req-vec(n;B;t*A r1 t*C)
   let d(D;B) in
      let d(A;D) in
      let d(B;C) in
      let d(A;B) in
      let d(D;C) in
      let (t/t r1) in
      x^2 (c^2 a^2 (s (b^2 d^2 a^2))))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) real-vec-mul: a*X real-vec-add: Y req-vec: req-vec(n;x;y) real-vec: ^n rooint: (l, u) i-member: r ∈ I rdiv: (x/y) rnexp: x^k1 rsub: y req: y rmul: b radd: b int-to-real: r(n) real: nat: let: let all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  not: ¬A false: False req_int_terms: t1 ≡ t2 uiff: uiff(P;Q) uimplies: supposing a prop: rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q uall: [x:A]. B[x] let: let top: Top member: t ∈ T implies:  Q all: x:A. B[x] real-vec-dist: d(x;y) real-vec-norm: ||x|| nat: le: A ≤ B less_than': less_than'(a;b) subtype_rel: A ⊆B rneq: x ≠ y or: P ∨ Q rev_uimplies: rev_uimplies(P;Q) real-vec-sub: Y real-vec-add: Y req-vec: req-vec(n;x;y) real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k true: True real-vec-mul: a*X squash: T guard: {T} rat_term_to_real: rat_term_to_real(f;t) rtermMultiply: left "*" right rat_term_ind: rat_term_ind rtermDivide: num "/" denom rtermVar: rtermVar(var) rtermSubtract: left "-" right rtermConstant: "const" rtermAdd: left "+" right pi1: fst(t) pi2: snd(t)

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}A,B,C,D:\mBbbR{}\^{}n.  \mforall{}t:\mBbbR{}.
    ((t  \mmember{}  (r0,  r1))
    {}\mRightarrow{}  req-vec(n;B;t*A  +  r1  -  t*C)
    {}\mRightarrow{}  let  a  =  d(D;B)  in
            let  b  =  d(A;D)  in
            let  c  =  d(B;C)  in
            let  d  =  d(A;B)  in
            let  x  =  d(D;C)  in
            let  s  =  (t/t  -  r1)  in
            x\^{}2  =  (c\^{}2  +  a\^{}2  +  (s  *  (b\^{}2  -  d\^{}2  +  a\^{}2))))



Date html generated: 2020_05_20-PM-00_51_24
Last ObjectModification: 2020_03_17-PM-02_22_21

Theory : reals


Home Index