Nuprl Lemma : rv-inner-Pasch''

n:ℕ. ∀a,b,c,p,q:ℝ^n.
  (a-p-c
   b-q-c
   (∃x:ℝ^n. ((¬(a ≠ x ∧ x ≠ q ∧ a-x-q))) ∧ (b ≠ x ∧ x ≠ p ∧ b-x-p))) ∧ (a ≠  a-x-q) ∧ (b ≠  b-x-p))))


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-sep: a ≠ b real-vec: ^n nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q exists: x:A. B[x] and: P ∧ Q cand: c∧ B not: ¬A rv-T: rv-T(n;a;b;c) real-vec-be: real-vec-be(n;a;b;c) top: Top false: False prop: uall: [x:A]. B[x]
Lemmas referenced :  rv-inner-Pasch' member_rccint_lemma real-vec-sep_wf not_wf rv-between_wf real-vec_wf nat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination productElimination dependent_pairFormation sqequalRule isect_memberEquality voidElimination voidEquality isectElimination productEquality independent_pairFormation because_Cache functionEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,p,q:\mBbbR{}\^{}n.
    (a-p-c
    {}\mRightarrow{}  b-q-c
    {}\mRightarrow{}  (\mexists{}x:\mBbbR{}\^{}n
              ((\mneg{}(a  \mneq{}  x  \mwedge{}  x  \mneq{}  q  \mwedge{}  (\mneg{}a-x-q)))
              \mwedge{}  (\mneg{}(b  \mneq{}  x  \mwedge{}  x  \mneq{}  p  \mwedge{}  (\mneg{}b-x-p)))
              \mwedge{}  (a  \mneq{}  q  {}\mRightarrow{}  a-x-q)
              \mwedge{}  (b  \mneq{}  p  {}\mRightarrow{}  b-x-p))))



Date html generated: 2016_10_26-AM-10_50_41
Last ObjectModification: 2016_10_21-PM-01_49_49

Theory : reals


Home Index