Nuprl Lemma : rv-inner-Pasch''
∀n:ℕ. ∀a,b,c,p,q:ℝ^n.
  (a-p-c
  
⇒ b-q-c
  
⇒ (∃x:ℝ^n. ((¬(a ≠ x ∧ x ≠ q ∧ (¬a-x-q))) ∧ (¬(b ≠ x ∧ x ≠ p ∧ (¬b-x-p))) ∧ (a ≠ q 
⇒ a-x-q) ∧ (b ≠ p 
⇒ b-x-p))))
Proof
Definitions occuring in Statement : 
rv-between: a-b-c
, 
real-vec-sep: a ≠ b
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
not: ¬A
, 
rv-T: rv-T(n;a;b;c)
, 
real-vec-be: real-vec-be(n;a;b;c)
, 
top: Top
, 
false: False
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rv-inner-Pasch', 
member_rccint_lemma, 
real-vec-sep_wf, 
not_wf, 
rv-between_wf, 
real-vec_wf, 
nat_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
dependent_pairFormation, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
isectElimination, 
productEquality, 
independent_pairFormation, 
because_Cache, 
functionEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,p,q:\mBbbR{}\^{}n.
    (a-p-c
    {}\mRightarrow{}  b-q-c
    {}\mRightarrow{}  (\mexists{}x:\mBbbR{}\^{}n
              ((\mneg{}(a  \mneq{}  x  \mwedge{}  x  \mneq{}  q  \mwedge{}  (\mneg{}a-x-q)))
              \mwedge{}  (\mneg{}(b  \mneq{}  x  \mwedge{}  x  \mneq{}  p  \mwedge{}  (\mneg{}b-x-p)))
              \mwedge{}  (a  \mneq{}  q  {}\mRightarrow{}  a-x-q)
              \mwedge{}  (b  \mneq{}  p  {}\mRightarrow{}  b-x-p))))
Date html generated:
2016_10_26-AM-10_50_41
Last ObjectModification:
2016_10_21-PM-01_49_49
Theory : reals
Home
Index