Step
*
2
1
1
1
of Lemma
rv-line-circle-2
1. n : ℕ
2. a : ℝ^n
3. b : ℝ^n
4. ∀p,q:ℝ^n.
(a ≠ b
⇒ p ≠ q
⇒ (d(a;p) ≤ d(a;b))
⇒ (d(a;b) ≤ d(a;q))
⇒ (∃u:{u:ℝ^n| ab=au ∧ (¬(q ≠ u ∧ u ≠ p ∧ (¬q-u-p)))}
∃v:{v:ℝ^n| ab=av ∧ (¬(q ≠ p ∧ p ≠ v ∧ (¬q-p-v)))}
((d(a;p) < d(a;b))
⇒ (q-p-v ∧ ((d(a;b) < d(a;q))
⇒ q-u-p)))))
5. p : ℝ^n
6. ¬¬(∃u,v,w:ℝ^n. ((¬(u ≠ v ∧ v ≠ w ∧ (¬u-v-w))) ∧ ap=uv ∧ ab=uw))
7. q : ℝ^n
8. a ≠ b
9. p ≠ q
10. d(a;q) < d(a;b)
11. u : ℝ^n
12. v : ℝ^n
13. w : ℝ^n
14. rv-T(n;u;v;w)
15. d(a;b) = d(u;v)
16. d(a;q) = d(u;w)
17. d(a;q) = (d(a;b) + d(v;w))
⊢ False
BY
{ (Assert r0 ≤ d(v;w) BY
Auto) }
1
1. n : ℕ
2. a : ℝ^n
3. b : ℝ^n
4. ∀p,q:ℝ^n.
(a ≠ b
⇒ p ≠ q
⇒ (d(a;p) ≤ d(a;b))
⇒ (d(a;b) ≤ d(a;q))
⇒ (∃u:{u:ℝ^n| ab=au ∧ (¬(q ≠ u ∧ u ≠ p ∧ (¬q-u-p)))}
∃v:{v:ℝ^n| ab=av ∧ (¬(q ≠ p ∧ p ≠ v ∧ (¬q-p-v)))}
((d(a;p) < d(a;b))
⇒ (q-p-v ∧ ((d(a;b) < d(a;q))
⇒ q-u-p)))))
5. p : ℝ^n
6. ¬¬(∃u,v,w:ℝ^n. ((¬(u ≠ v ∧ v ≠ w ∧ (¬u-v-w))) ∧ ap=uv ∧ ab=uw))
7. q : ℝ^n
8. a ≠ b
9. p ≠ q
10. d(a;q) < d(a;b)
11. u : ℝ^n
12. v : ℝ^n
13. w : ℝ^n
14. rv-T(n;u;v;w)
15. d(a;b) = d(u;v)
16. d(a;q) = d(u;w)
17. d(a;q) = (d(a;b) + d(v;w))
18. r0 ≤ d(v;w)
⊢ False
Latex:
Latex:
1. n : \mBbbN{}
2. a : \mBbbR{}\^{}n
3. b : \mBbbR{}\^{}n
4. \mforall{}p,q:\mBbbR{}\^{}n.
(a \mneq{} b
{}\mRightarrow{} p \mneq{} q
{}\mRightarrow{} (d(a;p) \mleq{} d(a;b))
{}\mRightarrow{} (d(a;b) \mleq{} d(a;q))
{}\mRightarrow{} (\mexists{}u:\{u:\mBbbR{}\^{}n| ab=au \mwedge{} (\mneg{}(q \mneq{} u \mwedge{} u \mneq{} p \mwedge{} (\mneg{}q-u-p)))\}
\mexists{}v:\{v:\mBbbR{}\^{}n| ab=av \mwedge{} (\mneg{}(q \mneq{} p \mwedge{} p \mneq{} v \mwedge{} (\mneg{}q-p-v)))\}
((d(a;p) < d(a;b)) {}\mRightarrow{} (q-p-v \mwedge{} ((d(a;b) < d(a;q)) {}\mRightarrow{} q-u-p)))))
5. p : \mBbbR{}\^{}n
6. \mneg{}\mneg{}(\mexists{}u,v,w:\mBbbR{}\^{}n. ((\mneg{}(u \mneq{} v \mwedge{} v \mneq{} w \mwedge{} (\mneg{}u-v-w))) \mwedge{} ap=uv \mwedge{} ab=uw))
7. q : \mBbbR{}\^{}n
8. a \mneq{} b
9. p \mneq{} q
10. d(a;q) < d(a;b)
11. u : \mBbbR{}\^{}n
12. v : \mBbbR{}\^{}n
13. w : \mBbbR{}\^{}n
14. rv-T(n;u;v;w)
15. d(a;b) = d(u;v)
16. d(a;q) = d(u;w)
17. d(a;q) = (d(a;b) + d(v;w))
\mvdash{} False
By
Latex:
(Assert r0 \mleq{} d(v;w) BY
Auto)
Home
Index