Nuprl Lemma : rv-line-circle-3

n:ℕ. ∀c,b,d,q:ℝ^n.
  (c_b_d
   (d(c;d) < d(c;q))
   (∃u:{u:ℝ^n| cd=cu ∧ q_u_b} 
       (∃v:ℝ^n [(cd=cv
               ∧ q_b_v
               ∧ (b ≠  (u ≠ v ∧ u ≠ b ∧ v ≠ b))
               ∧ (req-vec(n;b;d)
                  ((u ≠  ((req-vec(n;u;b) ∧ (r0 < c⋅b)) ∨ (req-vec(n;v;b) ∧ (b c⋅b < r0))))
                    ∧ (req-vec(n;u;v)  ((b c⋅r0) ∧ req-vec(n;u;b))))))])))


Proof




Definitions occuring in Statement :  rv-be: a_b_c real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec-dist: d(x;y) dot-product: x⋅y real-vec-sub: Y req-vec: req-vec(n;x;y) real-vec: ^n rless: x < y req: y int-to-real: r(n) nat: all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T guard: {T} subtype_rel: A ⊆B uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q prop: real-vec-sep: a ≠ b rev_implies:  Q rge: x ≥ y rv-be: a_b_c exists: x:A. B[x] sq_exists: x:A [B[x]] cand: c∧ B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) or: P ∨ Q req_int_terms: t1 ≡ t2 false: False not: ¬A rless: x < y rv-between: a-b-c

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}c,b,d,q:\mBbbR{}\^{}n.
    (c\_b\_d
    {}\mRightarrow{}  (d(c;d)  <  d(c;q))
    {}\mRightarrow{}  (\mexists{}u:\{u:\mBbbR{}\^{}n|  cd=cu  \mwedge{}  q\_u\_b\} 
              (\mexists{}v:\mBbbR{}\^{}n  [(cd=cv
                              \mwedge{}  q\_b\_v
                              \mwedge{}  (b  \mneq{}  d  {}\mRightarrow{}  (u  \mneq{}  v  \mwedge{}  u  \mneq{}  b  \mwedge{}  v  \mneq{}  b))
                              \mwedge{}  (req-vec(n;b;d)
                                  {}\mRightarrow{}  ((u  \mneq{}  v
                                        {}\mRightarrow{}  ((req-vec(n;u;b)  \mwedge{}  (r0  <  b  -  c\mcdot{}q  -  b))
                                              \mvee{}  (req-vec(n;v;b)  \mwedge{}  (b  -  c\mcdot{}q  -  b  <  r0))))
                                        \mwedge{}  (req-vec(n;u;v)  {}\mRightarrow{}  ((b  -  c\mcdot{}q  -  b  =  r0)  \mwedge{}  req-vec(n;u;b))))))])))



Date html generated: 2020_05_20-PM-00_56_53
Last ObjectModification: 2020_01_06-PM-00_08_16

Theory : reals


Home Index