Step
*
of Lemma
rv-line-circle
No Annotations
∀n:ℕ. ∀a,b,p,q:ℝ^n.
(p ≠ q
⇒ (∀x:{x:ℝ^n| ap=ax ∧ (¬(a ≠ x ∧ x ≠ b ∧ (¬a-x-b)))} . ∀y:{y:ℝ^n| aq=ay ∧ (¬(a ≠ b ∧ b ≠ y ∧ (¬a-b-y)))} .
∃u:{u:ℝ^n| ab=au ∧ (¬(q ≠ u ∧ u ≠ p ∧ (¬q-u-p)))}
∃v:{v:ℝ^n| ab=av ∧ (¬(q ≠ p ∧ p ≠ v ∧ (¬q-p-v)))} . (a-x-b
⇒ (q-p-v ∧ (a-b-y
⇒ q-u-p)))))
BY
{ (InstLemma `rv-line-circle-0` [] THEN RepeatFor 6 ((ParallelLast' THENA Auto)) THEN RepeatFor 2 ((D 0 THENA Auto))) }
1
1. n : ℕ
2. a : ℝ^n
3. b : ℝ^n
4. p : ℝ^n
5. q : ℝ^n
6. p ≠ q
7. (d(a;p) ≤ d(a;b))
⇒ (d(a;b) ≤ d(a;q))
⇒ (∃u:{u:ℝ^n| ab=au ∧ (¬(q ≠ u ∧ u ≠ p ∧ (¬q-u-p)))}
(∃v:ℝ^n [(ab=av
∧ (¬(q ≠ p ∧ p ≠ v ∧ (¬q-p-v)))
∧ ((d(a;p) < d(a;b))
⇒ (q-p-v ∧ ((d(a;b) < d(a;q))
⇒ q-u-p)))
∧ ((d(a;p) = d(a;b))
⇒ ((u ≠ v
⇒ ((req-vec(n;u;p) ∧ (r0 < p - a⋅q - p)) ∨ (req-vec(n;v;p) ∧ (p - a⋅q - p < r0))))
∧ (req-vec(n;u;v)
⇒ ((p - a⋅q - p = r0) ∧ req-vec(n;u;p))))))]))
8. x : {x:ℝ^n| ap=ax ∧ (¬(a ≠ x ∧ x ≠ b ∧ (¬a-x-b)))}
9. y : {y:ℝ^n| aq=ay ∧ (¬(a ≠ b ∧ b ≠ y ∧ (¬a-b-y)))}
⊢ ∃u:{u:ℝ^n| ab=au ∧ (¬(q ≠ u ∧ u ≠ p ∧ (¬q-u-p)))}
∃v:{v:ℝ^n| ab=av ∧ (¬(q ≠ p ∧ p ≠ v ∧ (¬q-p-v)))} . (a-x-b
⇒ (q-p-v ∧ (a-b-y
⇒ q-u-p)))
Latex:
Latex:
No Annotations
\mforall{}n:\mBbbN{}. \mforall{}a,b,p,q:\mBbbR{}\^{}n.
(p \mneq{} q
{}\mRightarrow{} (\mforall{}x:\{x:\mBbbR{}\^{}n| ap=ax \mwedge{} (\mneg{}(a \mneq{} x \mwedge{} x \mneq{} b \mwedge{} (\mneg{}a-x-b)))\} . \mforall{}y:\{y:\mBbbR{}\^{}n|
aq=ay \mwedge{} (\mneg{}(a \mneq{} b \mwedge{} b \mneq{} y \mwedge{} (\mneg{}a-b-y)))\} \000C.
\mexists{}u:\{u:\mBbbR{}\^{}n| ab=au \mwedge{} (\mneg{}(q \mneq{} u \mwedge{} u \mneq{} p \mwedge{} (\mneg{}q-u-p)))\}
\mexists{}v:\{v:\mBbbR{}\^{}n| ab=av \mwedge{} (\mneg{}(q \mneq{} p \mwedge{} p \mneq{} v \mwedge{} (\mneg{}q-p-v)))\} . (a-x-b {}\mRightarrow{} (q-p-v \mwedge{} (a-b-y {}\mRightarrow{} q-u-p)))))
By
Latex:
(InstLemma `rv-line-circle-0` []
THEN RepeatFor 6 ((ParallelLast' THENA Auto))
THEN RepeatFor 2 ((D 0 THENA Auto)))
Home
Index