Nuprl Lemma : rv-pos-angle_wf

[n:ℕ]. ∀[a,b,c:ℝ^n].  (rv-pos-angle(n;a;b;c) ∈ ℙ)


Proof




Definitions occuring in Statement :  rv-pos-angle: rv-pos-angle(n;a;b;c) real-vec: ^n nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rv-pos-angle: rv-pos-angle(n;a;b;c)
Lemmas referenced :  rless_wf rabs_wf dot-product_wf real-vec-sub_wf rmul_wf real-vec-norm_wf real-vec_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c:\mBbbR{}\^{}n].    (rv-pos-angle(n;a;b;c)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_03-AM-10_54_21
Last ObjectModification: 2017_03_01-PM-04_39_35

Theory : reals


Home Index