Step
*
1
1
of Lemma
series-converges-limit-zero
1. x : ℕ ⟶ ℝ
2. a : ℝ
3. ∀k:ℕ+. (∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (|Σ{x[i] | 0≤i≤n} - a| ≤ (r1/r(k)))))])
4. k : ℕ+
5. N : ℕ
6. ∀n:ℕ. ((N ≤ n)
⇒ (|Σ{x[i] | 0≤i≤n} - a| ≤ (r1/r(2 * k))))
7. n : ℕ
8. (N + 1) ≤ n
⊢ |x[n]| ≤ (r1/r(k))
BY
{ Assert ⌜|x[n]| ≤ (|Σ{x[i] | 0≤i≤n} - a| + |a - Σ{x[i] | 0≤i≤n - 1}|)⌝⋅ }
1
.....assertion.....
1. x : ℕ ⟶ ℝ
2. a : ℝ
3. ∀k:ℕ+. (∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (|Σ{x[i] | 0≤i≤n} - a| ≤ (r1/r(k)))))])
4. k : ℕ+
5. N : ℕ
6. ∀n:ℕ. ((N ≤ n)
⇒ (|Σ{x[i] | 0≤i≤n} - a| ≤ (r1/r(2 * k))))
7. n : ℕ
8. (N + 1) ≤ n
⊢ |x[n]| ≤ (|Σ{x[i] | 0≤i≤n} - a| + |a - Σ{x[i] | 0≤i≤n - 1}|)
2
1. x : ℕ ⟶ ℝ
2. a : ℝ
3. ∀k:ℕ+. (∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (|Σ{x[i] | 0≤i≤n} - a| ≤ (r1/r(k)))))])
4. k : ℕ+
5. N : ℕ
6. ∀n:ℕ. ((N ≤ n)
⇒ (|Σ{x[i] | 0≤i≤n} - a| ≤ (r1/r(2 * k))))
7. n : ℕ
8. (N + 1) ≤ n
9. |x[n]| ≤ (|Σ{x[i] | 0≤i≤n} - a| + |a - Σ{x[i] | 0≤i≤n - 1}|)
⊢ |x[n]| ≤ (r1/r(k))
Latex:
Latex:
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. a : \mBbbR{}
3. \mforall{}k:\mBbbN{}\msupplus{}. (\mexists{}N:\mBbbN{} [(\mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (|\mSigma{}\{x[i] | 0\mleq{}i\mleq{}n\} - a| \mleq{} (r1/r(k)))))])
4. k : \mBbbN{}\msupplus{}
5. N : \mBbbN{}
6. \mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (|\mSigma{}\{x[i] | 0\mleq{}i\mleq{}n\} - a| \mleq{} (r1/r(2 * k))))
7. n : \mBbbN{}
8. (N + 1) \mleq{} n
\mvdash{} |x[n]| \mleq{} (r1/r(k))
By
Latex:
Assert \mkleeneopen{}|x[n]| \mleq{} (|\mSigma{}\{x[i] | 0\mleq{}i\mleq{}n\} - a| + |a - \mSigma{}\{x[i] | 0\mleq{}i\mleq{}n - 1\}|)\mkleeneclose{}\mcdot{}
Home
Index