Nuprl Lemma : series-converges-rmul-ext

c:ℝ. ∀x:ℕ ⟶ ℝ.  n.x[n]↓  Σn.x[n] c↓)


Proof




Definitions occuring in Statement :  series-converges: Σn.x[n]↓ rmul: b real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  integer-bound series-sum-linear3 series-converges-rmul rabs: |x| member: t ∈ T
Lemmas referenced :  series-converges-rmul integer-bound series-sum-linear3
Rules used in proof :  equalitySymmetry equalityTransitivity sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}c:\mBbbR{}.  \mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.    (\mSigma{}n.x[n]\mdownarrow{}  {}\mRightarrow{}  \mSigma{}n.x[n]  *  c\mdownarrow{})



Date html generated: 2018_05_22-PM-02_02_19
Last ObjectModification: 2018_05_21-AM-00_15_29

Theory : reals


Home Index