Nuprl Lemma : series-sum-linear3

x:ℕ ⟶ ℝ. ∀a,c:ℝ.  n.x[n]  Σn.x[n] c)


Proof




Definitions occuring in Statement :  series-sum: Σn.x[n] a rmul: b real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  series-sum: Σn.x[n] a all: x:A. B[x] implies:  Q converges-to: lim n→∞.x[n] y member: t ∈ T exists: x:A. B[x] uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a nat_plus: + sq_type: SQType(T) guard: {T} nat: subtype_rel: A ⊆B le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A sq_exists: x:{A| B[x]} rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top rleq: x ≤ y rnonneg: rnonneg(x) rsub: y uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y
Lemmas referenced :  integer-bound equal_wf set-value-type less_than_wf int-value-type subtype_base_sq nat_plus_wf set_subtype_base int_subtype_base converges-to_wf rsum_wf nat_wf int_seg_subtype_nat false_wf int_seg_wf real_wf mul_nat_plus le_wf all_wf rleq_wf rabs_wf rsub_wf rmul_wf rdiv_wf int-to-real_wf rless-int nat_properties nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf rmul_preserves_rleq2 mul_bounds_1b zero-rleq-rabs less_than'_wf radd_wf rminus_wf rleq_functionality req_inversion rabs-rmul req_weakening rabs_functionality rmul-distrib2 radd_functionality rsum_linearity3 rmul_over_rminus rleq_functionality_wrt_implies rleq_weakening_equal rleq-int-fractions2 decidable__le intformle_wf itermMultiply_wf int_formula_prop_le_lemma int_term_value_mul_lemma uiff_transitivity rmul-int-rdiv rmul_comm rleq-int-fractions
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality productElimination because_Cache cutEval dependent_set_memberEquality isectElimination equalityTransitivity hypothesis equalitySymmetry lambdaEquality independent_isectElimination intEquality natural_numberEquality setElimination rename promote_hyp instantiate cumulativity independent_functionElimination applyEquality functionExtensionality addEquality independent_pairFormation functionEquality inrFormation unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll isect_memberFormation multiplyEquality independent_pairEquality minusEquality axiomEquality

Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}a,c:\mBbbR{}.    (\mSigma{}n.x[n]  =  a  {}\mRightarrow{}  \mSigma{}n.x[n]  *  c  =  a  *  c)



Date html generated: 2017_10_03-AM-09_18_01
Last ObjectModification: 2017_07_28-AM-07_43_19

Theory : reals


Home Index