Nuprl Lemma : zero-rleq-rabs

[x:ℝ]. (r0 ≤ |x|)


Proof




Definitions occuring in Statement :  rleq: x ≤ y rabs: |x| int-to-real: r(n) real: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False subtype_rel: A ⊆B real: prop: uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  rabs-nonneg less_than'_wf rsub_wf rabs_wf int-to-real_wf real_wf nat_plus_wf rmul_wf rnonneg_functionality req_transitivity real_term_polynomial itermSubtract_wf itermVar_wf itermConstant_wf itermMultiply_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_mul_lemma req-iff-rsub-is-0 rmul-identity1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination productElimination independent_pairEquality voidElimination applyEquality hypothesis natural_numberEquality setElimination rename minusEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache independent_isectElimination computeAll int_eqEquality intEquality isect_memberEquality voidEquality independent_functionElimination

Latex:
\mforall{}[x:\mBbbR{}].  (r0  \mleq{}  |x|)



Date html generated: 2017_10_03-AM-08_29_18
Last ObjectModification: 2017_07_28-AM-07_25_49

Theory : reals


Home Index