Nuprl Lemma : rleq_weakening_equal

[x,y:ℝ].  x ≤ supposing y ∈ ℝ


Proof




Definitions occuring in Statement :  rleq: x ≤ y real: uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a guard: {T} rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False subtype_rel: A ⊆B real: prop:
Lemmas referenced :  rleq_weakening req_weakening less_than'_wf rsub_wf real_wf nat_plus_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination because_Cache sqequalRule lambdaEquality dependent_functionElimination productElimination independent_pairEquality applyEquality setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination

Latex:
\mforall{}[x,y:\mBbbR{}].    x  \mleq{}  y  supposing  x  =  y



Date html generated: 2016_10_26-AM-09_06_37
Last ObjectModification: 2016_08_04-PM-03_58_59

Theory : reals


Home Index