Nuprl Lemma : series-converges-tail2-ext

N:ℕ. ∀x:ℕ ⟶ ℝ.  n.x[n N]↓  Σn.x[n]↓)


Proof




Definitions occuring in Statement :  series-converges: Σn.x[n]↓ real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m
Definitions unfolded in proof :  series-converges-tail2 so_apply: x[s] subtract: m member: t ∈ T
Lemmas referenced :  series-converges-tail2
Rules used in proof :  equalitySymmetry equalityTransitivity sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}N:\mBbbN{}.  \mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.    (\mSigma{}n.x[n  +  N]\mdownarrow{}  {}\mRightarrow{}  \mSigma{}n.x[n]\mdownarrow{})



Date html generated: 2018_05_22-PM-02_02_09
Last ObjectModification: 2018_05_21-AM-00_15_11

Theory : reals


Home Index