Nuprl Lemma : series-converges-tail2-ext
∀N:ℕ. ∀x:ℕ ⟶ ℝ.  (Σn.x[n + N]↓ 
⇒ Σn.x[n]↓)
Proof
Definitions occuring in Statement : 
series-converges: Σn.x[n]↓
, 
real: ℝ
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
Definitions unfolded in proof : 
series-converges-tail2, 
so_apply: x[s]
, 
subtract: n - m
, 
member: t ∈ T
Lemmas referenced : 
series-converges-tail2
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}N:\mBbbN{}.  \mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.    (\mSigma{}n.x[n  +  N]\mdownarrow{}  {}\mRightarrow{}  \mSigma{}n.x[n]\mdownarrow{})
Date html generated:
2018_05_22-PM-02_02_09
Last ObjectModification:
2018_05_21-AM-00_15_11
Theory : reals
Home
Index