Nuprl Lemma : series-converges-tail2

N:ℕ. ∀x:ℕ ⟶ ℝ.  n.x[n N]↓  Σn.x[n]↓)


Proof




Definitions occuring in Statement :  series-converges: Σn.x[n]↓ real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q guard: {T} rneq: x ≠ y nat_plus: + sq_exists: x:A [B[x]] converges-to: lim n→∞.x[n] y series-sum: Σn.x[n] a prop: false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) ge: i ≥  squash: T less_than: a < b le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} so_apply: x[s] so_lambda: λ2x.t[x] nat: uall: [x:A]. B[x] member: t ∈ T exists: x:A. B[x] series-converges: Σn.x[n]↓ implies:  Q all: x:A. B[x] sq_type: SQType(T) true: True subtract: m less_than': less_than'(a;b) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 pointwise-req: x[k] y[k] for k ∈ [n,m] subtype_rel: A ⊆B

Latex:
\mforall{}N:\mBbbN{}.  \mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.    (\mSigma{}n.x[n  +  N]\mdownarrow{}  {}\mRightarrow{}  \mSigma{}n.x[n]\mdownarrow{})



Date html generated: 2020_05_20-AM-11_20_00
Last ObjectModification: 2019_12_28-AM-11_06_45

Theory : reals


Home Index