Step
*
1
2
1
of Lemma
series-converges-tail
1. x : ℕ ⟶ ℝ
2. a : ℝ
3. ∀k:ℕ+. (∃N:{ℕ| (∀n:ℕ. ((N ≤ n)
⇒ (|Σ{x[i] | 0≤i≤n} - a| ≤ (r1/r(k)))))})
4. y : ℕ ⟶ ℝ
5. N : ℕ
6. ∀n:{N...}. (y[n] = x[n])
7. k : ℕ+
8. N1 : ℕ
9. ∀n:ℕ. ((N1 ≤ n)
⇒ (|Σ{x[i] | 0≤i≤n} - a| ≤ (r1/r(k))))
10. n : ℕ
11. imax(N;N1) ≤ n
12. |Σ{y[i] | 0≤i≤n} - Σ{y[n] - x[n] | 0≤n≤N} - a| ≤ (r1/r(k))
13. Σ{x[i] | 0≤i≤n} = (Σ{y[i] | 0≤i≤n} - Σ{y[n] - x[n] | 0≤n≤N})
⊢ |Σ{y[i] | 0≤i≤n} - a + Σ{y[n] - x[n] | 0≤n≤N}| ≤ (r1/r(k))
BY
{ (RWO "-2<" 0 THENA Auto) }
1
1. x : ℕ ⟶ ℝ
2. a : ℝ
3. ∀k:ℕ+. (∃N:{ℕ| (∀n:ℕ. ((N ≤ n)
⇒ (|Σ{x[i] | 0≤i≤n} - a| ≤ (r1/r(k)))))})
4. y : ℕ ⟶ ℝ
5. N : ℕ
6. ∀n:{N...}. (y[n] = x[n])
7. k : ℕ+
8. N1 : ℕ
9. ∀n:ℕ. ((N1 ≤ n)
⇒ (|Σ{x[i] | 0≤i≤n} - a| ≤ (r1/r(k))))
10. n : ℕ
11. imax(N;N1) ≤ n
12. |Σ{y[i] | 0≤i≤n} - Σ{y[n] - x[n] | 0≤n≤N} - a| ≤ (r1/r(k))
13. Σ{x[i] | 0≤i≤n} = (Σ{y[i] | 0≤i≤n} - Σ{y[n] - x[n] | 0≤n≤N})
⊢ |Σ{y[i] | 0≤i≤n} - a + Σ{y[n] - x[n] | 0≤n≤N}| ≤ |Σ{y[i] | 0≤i≤n} - Σ{y[n] - x[n] | 0≤n≤N} - a|
Latex:
Latex:
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. a : \mBbbR{}
3. \mforall{}k:\mBbbN{}\msupplus{}. (\mexists{}N:\{\mBbbN{}| (\mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (|\mSigma{}\{x[i] | 0\mleq{}i\mleq{}n\} - a| \mleq{} (r1/r(k)))))\})
4. y : \mBbbN{} {}\mrightarrow{} \mBbbR{}
5. N : \mBbbN{}
6. \mforall{}n:\{N...\}. (y[n] = x[n])
7. k : \mBbbN{}\msupplus{}
8. N1 : \mBbbN{}
9. \mforall{}n:\mBbbN{}. ((N1 \mleq{} n) {}\mRightarrow{} (|\mSigma{}\{x[i] | 0\mleq{}i\mleq{}n\} - a| \mleq{} (r1/r(k))))
10. n : \mBbbN{}
11. imax(N;N1) \mleq{} n
12. |\mSigma{}\{y[i] | 0\mleq{}i\mleq{}n\} - \mSigma{}\{y[n] - x[n] | 0\mleq{}n\mleq{}N\} - a| \mleq{} (r1/r(k))
13. \mSigma{}\{x[i] | 0\mleq{}i\mleq{}n\} = (\mSigma{}\{y[i] | 0\mleq{}i\mleq{}n\} - \mSigma{}\{y[n] - x[n] | 0\mleq{}n\mleq{}N\})
\mvdash{} |\mSigma{}\{y[i] | 0\mleq{}i\mleq{}n\} - a + \mSigma{}\{y[n] - x[n] | 0\mleq{}n\mleq{}N\}| \mleq{} (r1/r(k))
By
Latex:
(RWO "-2<" 0 THENA Auto)
Home
Index