Nuprl Lemma : series-converges_wf

[x:ℕ ⟶ ℝ]. n.x[n]↓ ∈ ℙ)


Proof




Definitions occuring in Statement :  series-converges: Σn.x[n]↓ real: nat: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  series-converges: Σn.x[n]↓ uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf real_wf series-sum_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality applyEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  (\mSigma{}n.x[n]\mdownarrow{}  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-07_57_51
Last ObjectModification: 2015_12_28-AM-01_09_07

Theory : reals


Home Index