Nuprl Lemma : series-sum_wf

[x:ℕ ⟶ ℝ]. ∀[a:ℝ].  n.x[n] a ∈ ℙ)


Proof




Definitions occuring in Statement :  series-sum: Σn.x[n] a real: nat: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  series-sum: Σn.x[n] a uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] nat: so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop:
Lemmas referenced :  converges-to_wf rsum_wf int_seg_subtype_nat false_wf int_seg_wf nat_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality natural_numberEquality setElimination rename hypothesisEquality applyEquality addEquality independent_isectElimination independent_pairFormation lambdaFormation hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[a:\mBbbR{}].    (\mSigma{}n.x[n]  =  a  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-07_56_49
Last ObjectModification: 2015_12_28-AM-01_08_00

Theory : reals


Home Index