Step
*
of Lemma
series-sum_functionality
∀x,y:ℕ ⟶ ℝ. ∀a,b:ℝ. ({Σn.x[n] = a
⇒ Σn.y[n] = b}) supposing ((a = b) and (∀n:ℕ. (x[n] = y[n])))
BY
{ ((UnivCD THENA Auto) THEN Unfold `series-sum` 0 THEN BLemma `converges-to_functionality` THEN Auto) }
1
1. x : ℕ ⟶ ℝ
2. y : ℕ ⟶ ℝ
3. a : ℝ
4. b : ℝ
5. ∀n:ℕ. (x[n] = y[n])
6. a = b
7. n : ℕ
⊢ Σ{x[i] | 0≤i≤n} = Σ{y[i] | 0≤i≤n}
Latex:
Latex:
\mforall{}x,y:\mBbbN{} {}\mrightarrow{} \mBbbR{}. \mforall{}a,b:\mBbbR{}. (\{\mSigma{}n.x[n] = a {}\mRightarrow{} \mSigma{}n.y[n] = b\}) supposing ((a = b) and (\mforall{}n:\mBbbN{}. (x[n] = y[n])))
By
Latex:
((UnivCD THENA Auto) THEN Unfold `series-sum` 0 THEN BLemma `converges-to\_functionality` THEN Auto)
Home
Index