Step
*
1
of Lemma
shift-rpolynomial
1. n : ℕ
2. a : ℕn + 1 ⟶ ℝ
3. x : ℝ
⊢ Σ{(x * (a i)) * x^i | 0≤i≤n}
= ((r0 * r1) + Σ{if (i + 1 =z 0) then r0 else a ((i + 1) - 1) fi * x^i + 1 | 0≤i≤(n + 1) - 1})
BY
{ ((nRNorm 0 THENA Auto) THEN (Subst' (n + 1) - 1 ~ n 0 THEN Auto) THEN (BLemma `rsum_functionality` THENA Auto)) }
1
1. n : ℕ
2. a : ℕn + 1 ⟶ ℝ
3. x : ℝ
⊢ (a i) * x^i * x = if (i + 1 =z 0) then r0 else a ((i + 1) - 1) fi * x^i + 1 for i ∈ [0,n]
Latex:
Latex:
1. n : \mBbbN{}
2. a : \mBbbN{}n + 1 {}\mrightarrow{} \mBbbR{}
3. x : \mBbbR{}
\mvdash{} \mSigma{}\{(x * (a i)) * x\^{}i | 0\mleq{}i\mleq{}n\}
= ((r0 * r1) + \mSigma{}\{if (i + 1 =\msubz{} 0) then r0 else a ((i + 1) - 1) fi * x\^{}i + 1 | 0\mleq{}i\mleq{}(n + 1) - 1\})
By
Latex:
((nRNorm 0 THENA Auto)
THEN (Subst' (n + 1) - 1 \msim{} n 0 THEN Auto)
THEN (BLemma `rsum\_functionality` THENA Auto))
Home
Index