Step
*
1
1
of Lemma
simple-partition-exists
.....wf.....
1. a : ℝ
2. b : ℝ
3. a ≤ b
4. e : ℝ
5. r0 < e
6. icompact([a, b])
7. p : partition([a, b])
8. partition-mesh([a, b];p) ≤ e
9. ∀i:ℕ||full-partition([a, b];p)||. (full-partition([a, b];p)[i] ∈ [a, b])
⊢ λi.full-partition([a, b];p)[i] ∈ ℕ(||full-partition([a, b];p)|| - 1) + 1 ⟶ {x:ℝ| x ∈ [a, b]}
BY
{ MemCD }
1
.....subterm..... T:t
1:n
1. a : ℝ
2. b : ℝ
3. a ≤ b
4. e : ℝ
5. r0 < e
6. icompact([a, b])
7. p : partition([a, b])
8. partition-mesh([a, b];p) ≤ e
9. ∀i:ℕ||full-partition([a, b];p)||. (full-partition([a, b];p)[i] ∈ [a, b])
10. i : ℕ(||full-partition([a, b];p)|| - 1) + 1
⊢ full-partition([a, b];p)[i] ∈ {x:ℝ| x ∈ [a, b]}
2
.....eq aux.....
1. a : ℝ
2. b : ℝ
3. a ≤ b
4. e : ℝ
5. r0 < e
6. icompact([a, b])
7. p : partition([a, b])
8. partition-mesh([a, b];p) ≤ e
9. ∀i:ℕ||full-partition([a, b];p)||. (full-partition([a, b];p)[i] ∈ [a, b])
⊢ ℕ(||full-partition([a, b];p)|| - 1) + 1 ∈ Type
Latex:
Latex:
.....wf.....
1. a : \mBbbR{}
2. b : \mBbbR{}
3. a \mleq{} b
4. e : \mBbbR{}
5. r0 < e
6. icompact([a, b])
7. p : partition([a, b])
8. partition-mesh([a, b];p) \mleq{} e
9. \mforall{}i:\mBbbN{}||full-partition([a, b];p)||. (full-partition([a, b];p)[i] \mmember{} [a, b])
\mvdash{} \mlambda{}i.full-partition([a, b];p)[i] \mmember{} \mBbbN{}(||full-partition([a, b];p)|| - 1) + 1 {}\mrightarrow{} \{x:\mBbbR{}| x \mmember{} [a, b]\}
By
Latex:
MemCD
Home
Index