Step
*
1
2
2
1
of Lemma
simple-partition-exists
1. a : ℝ
2. b : ℝ
3. a ≤ b
4. e : ℝ
5. r0 < e
6. icompact([a, b])
7. p : partition([a, b])
8. partition-mesh([a, b];p) ≤ e
9. ∀i:ℕ||full-partition([a, b];p)||. (full-partition([a, b];p)[i] ∈ [a, b])
10. full-partition([a, b];p)[0] = a ∈ ℝ
11. full-partition([a, b];p)[||full-partition([a, b];p)|| - 1] = b ∈ ℝ
12. i : ℕ||full-partition([a, b];p)|| - 1
13. r0 ≤ (full-partition([a, b];p)[i + 1] - full-partition([a, b];p)[i])
14. (full-partition([a, b];p)[i + 1] - full-partition([a, b];p)[i]) ≤ partition-mesh([a, b];p)
⊢ full-partition([a, b];p)[i] ≤ full-partition([a, b];p)[i + 1]
BY
{ (nRAdd ⌜full-partition([a, b];p)[i]⌝ (-2)⋅ THEN Auto) }
Latex:
Latex:
1. a : \mBbbR{}
2. b : \mBbbR{}
3. a \mleq{} b
4. e : \mBbbR{}
5. r0 < e
6. icompact([a, b])
7. p : partition([a, b])
8. partition-mesh([a, b];p) \mleq{} e
9. \mforall{}i:\mBbbN{}||full-partition([a, b];p)||. (full-partition([a, b];p)[i] \mmember{} [a, b])
10. full-partition([a, b];p)[0] = a
11. full-partition([a, b];p)[||full-partition([a, b];p)|| - 1] = b
12. i : \mBbbN{}||full-partition([a, b];p)|| - 1
13. r0 \mleq{} (full-partition([a, b];p)[i + 1] - full-partition([a, b];p)[i])
14. (full-partition([a, b];p)[i + 1] - full-partition([a, b];p)[i]) \mleq{} partition-mesh([a, b];p)
\mvdash{} full-partition([a, b];p)[i] \mleq{} full-partition([a, b];p)[i + 1]
By
Latex:
(nRAdd \mkleeneopen{}full-partition([a, b];p)[i]\mkleeneclose{} (-2)\mcdot{} THEN Auto)
Home
Index