Nuprl Lemma : sine-approx-lemma-ext
∀a:{2...}. ∀N:ℕ+. (∃k:ℕ [(N ≤ (a^((2 * k) + 3) * ((2 * k) + 3)!))])
Proof
Definitions occuring in Statement :
fact: (n)!
,
exp: i^n
,
int_upper: {i...}
,
nat_plus: ℕ+
,
nat: ℕ
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
sq_exists: ∃x:A [B[x]]
,
multiply: n * m
,
add: n + m
,
natural_number: $n
Definitions unfolded in proof :
member: t ∈ T
,
sine-approx-lemma
Lemmas referenced :
sine-approx-lemma
Rules used in proof :
introduction,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
cut,
instantiate,
extract_by_obid,
hypothesis,
sqequalRule,
thin,
sqequalHypSubstitution,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}a:\{2...\}. \mforall{}N:\mBbbN{}\msupplus{}. (\mexists{}k:\mBbbN{} [(N \mleq{} (a\^{}((2 * k) + 3) * ((2 * k) + 3)!))])
Date html generated:
2019_10_29-AM-10_33_46
Last ObjectModification:
2019_02_11-PM-02_06_39
Theory : reals
Home
Index