Nuprl Lemma : sine-approx-lemma
∀a:{2...}. ∀N:ℕ+.  (∃k:ℕ [(N ≤ (a^((2 * k) + 3) * ((2 * k) + 3)!))])
Proof
Definitions occuring in Statement : 
fact: (n)!, 
exp: i^n, 
int_upper: {i...}, 
nat_plus: ℕ+, 
nat: ℕ, 
le: A ≤ B, 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
multiply: n * m, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
int_upper: {i...}, 
nat: ℕ, 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
squash: ↓T, 
label: ...$L... t, 
guard: {T}, 
true: True, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
rev_uimplies: rev_uimplies(P;Q), 
ge: i ≥ j , 
sq_exists: ∃x:A [B[x]], 
sq_type: SQType(T), 
rev_implies: P ⇐ Q, 
lt_int: i <z j, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
subtract: n - m, 
less_than: a < b, 
fact: (n)!, 
primrec: primrec(n;b;c), 
primtailrec: primtailrec(n;i;b;f)
Lemmas referenced : 
int_upper_wf, 
int_upper_properties, 
mul_preserves_le, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
set-value-type, 
equal_wf, 
le_wf, 
int-value-type, 
squash_wf, 
true_wf, 
istype-universe, 
exp2, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
subtype_rel_self, 
iff_weakening_equal, 
nat_plus_wf, 
istype-int_upper, 
genfact-inv_wf, 
itermAdd_wf, 
intformless_wf, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
mul_preserves_le2, 
mul_nat_plus, 
decidable__lt, 
istype-less_than, 
exp_wf_nat_plus, 
upper_subtype_nat, 
istype-false, 
less_than_functionality, 
le_weakening, 
multiply_functionality_wrt_le, 
exp_wf2, 
nat_properties, 
fact_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
ge_wf, 
genfact-step, 
btrue_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
lt_int_wf, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
subtract-1-ge-0, 
mul-commutes, 
fact_unroll, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
istype-nat, 
exp-positive, 
exp_add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
multiplyEquality, 
because_Cache, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
cutEval, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
inhabitedIsType, 
intEquality, 
applyEquality, 
imageElimination, 
instantiate, 
universeEquality, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
addEquality, 
cumulativity, 
intWeakElimination, 
axiomSqEquality, 
functionIsTypeImplies, 
sqequalIntensionalEquality, 
baseApply, 
closedConclusion, 
equalityElimination, 
promote_hyp
Latex:
\mforall{}a:\{2...\}.  \mforall{}N:\mBbbN{}\msupplus{}.    (\mexists{}k:\mBbbN{}  [(N  \mleq{}  (a\^{}((2  *  k)  +  3)  *  ((2  *  k)  +  3)!))])
Date html generated:
2019_10_29-AM-10_32_36
Last ObjectModification:
2019_02_12-AM-11_12_28
Theory : reals
Home
Index