Nuprl Lemma : exp2

[i:ℤ]. (i^2 (i i) ∈ ℤ)


Proof




Definitions occuring in Statement :  exp: i^n uall: [x:A]. B[x] multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False subtract: m squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  exp_step decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than equal_wf squash_wf true_wf istype-universe exp1 subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :dependent_set_memberEquality_alt,  natural_numberEquality dependent_functionElimination hypothesis unionElimination independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  hypothesisEquality applyEquality imageElimination equalityTransitivity equalitySymmetry Error :inhabitedIsType,  instantiate universeEquality intEquality multiplyEquality because_Cache imageMemberEquality baseClosed productElimination

Latex:
\mforall{}[i:\mBbbZ{}].  (i\^{}2  =  (i  *  i))



Date html generated: 2019_06_20-PM-01_18_44
Last ObjectModification: 2019_02_01-PM-01_25_13

Theory : int_2


Home Index