Nuprl Lemma : exp2
∀[i:ℤ]. (i^2 = (i * i) ∈ ℤ)
Proof
Definitions occuring in Statement : 
exp: i^n, 
uall: ∀[x:A]. B[x], 
multiply: n * m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
prop: ℙ, 
false: False, 
subtract: n - m, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
exp_step, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
exp1, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :dependent_set_memberEquality_alt, 
natural_numberEquality, 
dependent_functionElimination, 
hypothesis, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :universeIsType, 
hypothesisEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
instantiate, 
universeEquality, 
intEquality, 
multiplyEquality, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
productElimination
Latex:
\mforall{}[i:\mBbbZ{}].  (i\^{}2  =  (i  *  i))
Date html generated:
2019_06_20-PM-01_18_44
Last ObjectModification:
2019_02_01-PM-01_25_13
Theory : int_2
Home
Index