Step
*
1
of Lemma
sine-poly-approx-1
1. x : {x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)}
2. k : ℕ
3. e : {e:ℝ| r0 < e}
4. k1 : ℕ+
5. (r1/r(k1)) < e
6. N : ℕ
7. ∀i:ℕ. ((N ≤ i)
⇒ (|Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤i} - sine(x)| ≤ (r1/r(k1))))
8. |Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤N} - sine(x)| ≤ (r1/r(k1))
9. N ≤ k
10. |Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤k} - sine(x)| ≤ (r1/r(k1))
⊢ (r1/r(k1)) ≤ ((x^(2 * k) + 3/r(((2 * k) + 3)!)) + e)
BY
{ (Assert r0 ≤ (x^(2 * k) + 3/r(((2 * k) + 3)!)) BY
(nRMul ⌜r(((2 * k) + 3)!)⌝ 0⋅ THEN Auto)) }
1
1. x : {x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)}
2. k : ℕ
3. e : {e:ℝ| r0 < e}
4. k1 : ℕ+
5. (r1/r(k1)) < e
6. N : ℕ
7. ∀i:ℕ. ((N ≤ i)
⇒ (|Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤i} - sine(x)| ≤ (r1/r(k1))))
8. |Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤N} - sine(x)| ≤ (r1/r(k1))
9. N ≤ k
10. |Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤k} - sine(x)| ≤ (r1/r(k1))
11. r0 ≤ (x^(2 * k) + 3/r(((2 * k) + 3)!))
⊢ (r1/r(k1)) ≤ ((x^(2 * k) + 3/r(((2 * k) + 3)!)) + e)
Latex:
Latex:
1. x : \{x:\mBbbR{}| (r0 \mleq{} x) \mwedge{} (x \mleq{} r1)\}
2. k : \mBbbN{}
3. e : \{e:\mBbbR{}| r0 < e\}
4. k1 : \mBbbN{}\msupplus{}
5. (r1/r(k1)) < e
6. N : \mBbbN{}
7. \mforall{}i:\mBbbN{}. ((N \mleq{} i) {}\mRightarrow{} (|\mSigma{}\{-1\^{}i * (x\^{}(2 * i) + 1)/((2 * i) + 1)! | 0\mleq{}i\mleq{}i\} - sine(x)| \mleq{} (r1/r(k1))))
8. |\mSigma{}\{-1\^{}i * (x\^{}(2 * i) + 1)/((2 * i) + 1)! | 0\mleq{}i\mleq{}N\} - sine(x)| \mleq{} (r1/r(k1))
9. N \mleq{} k
10. |\mSigma{}\{-1\^{}i * (x\^{}(2 * i) + 1)/((2 * i) + 1)! | 0\mleq{}i\mleq{}k\} - sine(x)| \mleq{} (r1/r(k1))
\mvdash{} (r1/r(k1)) \mleq{} ((x\^{}(2 * k) + 3/r(((2 * k) + 3)!)) + e)
By
Latex:
(Assert r0 \mleq{} (x\^{}(2 * k) + 3/r(((2 * k) + 3)!)) BY
(nRMul \mkleeneopen{}r(((2 * k) + 3)!)\mkleeneclose{} 0\mcdot{} THEN Auto))
Home
Index