Step
*
2
3
2
of Lemma
sine-poly-approx-1
1. x : {x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)}
2. k : ℕ
3. e : {e:ℝ| r0 < e}
4. k1 : ℕ+
5. (r1/r(k1)) < e
6. N : ℕ
7. ∀i:ℕ. ((N ≤ i)
⇒ (|Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤i} - sine(x)| ≤ (r1/r(k1))))
8. |sine(x) - Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤N}| ≤ (r1/r(k1))
9. ¬(N ≤ k)
10. lim i→∞.(x^2 * i)/((2 * i) + 1)! = r0
⊢ lim n→∞.(x^(2 * n) + 1)/((2 * n) + 1)! = r0
BY
{ (InstLemma `const-rmul-limit-with-bound` [⌜λ2i.(x^2 * i)/((2 * i) + 1)!⌝; ⌜r0⌝;⌜x⌝;⌜1⌝]⋅ THEN Auto) }
1
1. x : {x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)}
2. k : ℕ
3. e : {e:ℝ| r0 < e}
4. k1 : ℕ+
5. (r1/r(k1)) < e
6. N : ℕ
7. ∀i:ℕ. ((N ≤ i)
⇒ (|Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤i} - sine(x)| ≤ (r1/r(k1))))
8. |sine(x) - Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤N}| ≤ (r1/r(k1))
9. ¬(N ≤ k)
10. lim i→∞.(x^2 * i)/((2 * i) + 1)! = r0
11. lim n→∞.x * (x^2 * n)/((2 * n) + 1)! = x * r0
⊢ lim n→∞.(x^(2 * n) + 1)/((2 * n) + 1)! = r0
Latex:
Latex:
1. x : \{x:\mBbbR{}| (r0 \mleq{} x) \mwedge{} (x \mleq{} r1)\}
2. k : \mBbbN{}
3. e : \{e:\mBbbR{}| r0 < e\}
4. k1 : \mBbbN{}\msupplus{}
5. (r1/r(k1)) < e
6. N : \mBbbN{}
7. \mforall{}i:\mBbbN{}. ((N \mleq{} i) {}\mRightarrow{} (|\mSigma{}\{-1\^{}i * (x\^{}(2 * i) + 1)/((2 * i) + 1)! | 0\mleq{}i\mleq{}i\} - sine(x)| \mleq{} (r1/r(k1))))
8. |sine(x) - \mSigma{}\{-1\^{}i * (x\^{}(2 * i) + 1)/((2 * i) + 1)! | 0\mleq{}i\mleq{}N\}| \mleq{} (r1/r(k1))
9. \mneg{}(N \mleq{} k)
10. lim i\mrightarrow{}\minfty{}.(x\^{}2 * i)/((2 * i) + 1)! = r0
\mvdash{} lim n\mrightarrow{}\minfty{}.(x\^{}(2 * n) + 1)/((2 * n) + 1)! = r0
By
Latex:
(InstLemma `const-rmul-limit-with-bound` [\mkleeneopen{}\mlambda{}\msubtwo{}i.(x\^{}2 * i)/((2 * i) + 1)!\mkleeneclose{}; \mkleeneopen{}r0\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}1\mkleeneclose{}]\mcdot{} THEN Auto)
Home
Index