Step
*
1
of Lemma
sine-poly-approx
1. x : {x:ℝ| |x| ≤ (r1/r(2))}
2. k : ℕ
3. N : ℕ+
4. |Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤k} - (r(sine-approx(x;k;N))/r(2 * N))| ≤ (r1/r(N))
⊢ (|sine(x) - Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤k}| + (r1/r(N))) ≤ ((|x|^(2 * k) + 3/r(((2 * k) + 3)!))
+ (r1/r(N)))
BY
{ ((InstLemma `sine-poly-approx-1` [⌜|x|⌝;⌜k⌝]⋅ THENA Auto)
THEN (Assert ⌜|sine(x) - Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤k}|
= |sine(|x|) - Σ{-1^i * (|x|^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤k}|⌝⋅
THENM ((RWO "-1" 0 THENA Auto) THEN RWO "-2" 0 THEN Auto)
)
) }
1
.....assertion.....
1. x : {x:ℝ| |x| ≤ (r1/r(2))}
2. k : ℕ
3. N : ℕ+
4. |Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤k} - (r(sine-approx(x;k;N))/r(2 * N))| ≤ (r1/r(N))
5. |sine(|x|) - Σ{-1^i * (|x|^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤k}| ≤ (|x|^(2 * k) + 3/r(((2 * k) + 3)!))
⊢ |sine(x) - Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤k}|
= |sine(|x|) - Σ{-1^i * (|x|^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤k}|
Latex:
Latex:
1. x : \{x:\mBbbR{}| |x| \mleq{} (r1/r(2))\}
2. k : \mBbbN{}
3. N : \mBbbN{}\msupplus{}
4. |\mSigma{}\{-1\^{}i * (x\^{}(2 * i) + 1)/((2 * i) + 1)! | 0\mleq{}i\mleq{}k\} - (r(sine-approx(x;k;N))/r(2 * N))| \mleq{} (r1/r(N))
\mvdash{} (|sine(x) - \mSigma{}\{-1\^{}i * (x\^{}(2 * i) + 1)/((2 * i) + 1)! | 0\mleq{}i\mleq{}k\}| + (r1/r(N))) \mleq{} ((|x|\^{}(2 * k)
+ 3/r(((2 * k) + 3)!))
+ (r1/r(N)))
By
Latex:
((InstLemma `sine-poly-approx-1` [\mkleeneopen{}|x|\mkleeneclose{};\mkleeneopen{}k\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (Assert \mkleeneopen{}|sine(x) - \mSigma{}\{-1\^{}i * (x\^{}(2 * i) + 1)/((2 * i) + 1)! | 0\mleq{}i\mleq{}k\}|
= |sine(|x|) - \mSigma{}\{-1\^{}i * (|x|\^{}(2 * i) + 1)/((2 * i) + 1)! | 0\mleq{}i\mleq{}k\}|\mkleeneclose{}\mcdot{}
THENM ((RWO "-1" 0 THENA Auto) THEN RWO "-2" 0 THEN Auto)
)
)
Home
Index