Step
*
of Lemma
sine-rminus
∀x:ℝ. (sine(-(x)) = -(sine(x)))
BY
{ (Auto
THEN (InstLemma `sine-is-limit` [⌜x⌝]⋅ THENA Auto)
THEN (InstLemma `sine-is-limit` [⌜-(x)⌝]⋅ THENA Auto)
THEN (RWO "rnexp-rminus" (-1) THENA Auto)
THEN (Assert ∀i:ℕ. isOdd((2 * i) + 1) = tt BY
(Auto
THEN Unfold `isOdd` 0
THEN ((RWO "mod2-add1" 0 THENA Auto) THEN (RWO "mod2-2n" 0 THENA Auto))
THEN Reduce 0
THEN Auto))
THEN (RWO "-1" (-2) THENA Auto)
THEN Reduce -2
THEN (InstLemma `series-sum-unique` [⌜λ2i.-1^i * (-(x^(2 * i) + 1))/((2 * i) + 1)!⌝]⋅ THENA Auto)
THEN BHyp -1
THEN Auto) }
1
1. x : ℝ
2. Σi.-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! = sine(x)
3. Σi.-1^i * (-(x^(2 * i) + 1))/((2 * i) + 1)! = sine(-(x))
4. ∀i:ℕ. isOdd((2 * i) + 1) = tt
5. ∀[a,b:ℝ].
(a = b) supposing
(Σn.-1^n * (-(x^(2 * n) + 1))/((2 * n) + 1)! = b and
Σn.-1^n * (-(x^(2 * n) + 1))/((2 * n) + 1)! = a)
⊢ Σn.-1^n * (-(x^(2 * n) + 1))/((2 * n) + 1)! = -(sine(x))
Latex:
Latex:
\mforall{}x:\mBbbR{}. (sine(-(x)) = -(sine(x)))
By
Latex:
(Auto
THEN (InstLemma `sine-is-limit` [\mkleeneopen{}x\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemma `sine-is-limit` [\mkleeneopen{}-(x)\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (RWO "rnexp-rminus" (-1) THENA Auto)
THEN (Assert \mforall{}i:\mBbbN{}. isOdd((2 * i) + 1) = tt BY
(Auto
THEN Unfold `isOdd` 0
THEN ((RWO "mod2-add1" 0 THENA Auto) THEN (RWO "mod2-2n" 0 THENA Auto))
THEN Reduce 0
THEN Auto))
THEN (RWO "-1" (-2) THENA Auto)
THEN Reduce -2
THEN (InstLemma `series-sum-unique` [\mkleeneopen{}\mlambda{}\msubtwo{}i.-1\^{}i * (-(x\^{}(2 * i) + 1))/((2 * i) + 1)!\mkleeneclose{}]\mcdot{} THENA Auto)
THEN BHyp -1
THEN Auto)
Home
Index