Nuprl Lemma : small-reciprocal-real-ext
∀x:{x:ℝ| r0 < x} . ∃k:ℕ+. ((r1/r(k)) < x)
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
sq_stable__rless, 
small-reciprocal-real, 
member: t ∈ T
Lemmas referenced : 
small-reciprocal-real, 
sq_stable__rless
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}x:\{x:\mBbbR{}|  r0  <  x\}  .  \mexists{}k:\mBbbN{}\msupplus{}.  ((r1/r(k))  <  x)
Date html generated:
2018_05_22-PM-01_50_19
Last ObjectModification:
2018_05_21-AM-00_08_47
Theory : reals
Home
Index