Nuprl Lemma : small-reciprocal-real-ext

x:{x:ℝr0 < x} . ∃k:ℕ+((r1/r(k)) < x)


Proof




Definitions occuring in Statement :  rdiv: (x/y) rless: x < y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  sq_stable__rless small-reciprocal-real member: t ∈ T
Lemmas referenced :  small-reciprocal-real sq_stable__rless
Rules used in proof :  equalitySymmetry equalityTransitivity sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}x:\{x:\mBbbR{}|  r0  <  x\}  .  \mexists{}k:\mBbbN{}\msupplus{}.  ((r1/r(k))  <  x)



Date html generated: 2018_05_22-PM-01_50_19
Last ObjectModification: 2018_05_21-AM-00_08_47

Theory : reals


Home Index