Nuprl Lemma : small-reciprocal-real

x:{x:ℝr0 < x} . ∃k:ℕ+((r1/r(k)) < x)


Proof




Definitions occuring in Statement :  rdiv: (x/y) rless: x < y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B real: prop: so_apply: x[s] rless: x < y sq_exists: x:{A| B[x]} uimplies: supposing a nat_plus: + int-to-real: r(n) decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top rational-approx: (x within 1/n) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m le: A ≤ B less_than': less_than'(a;b) true: True rneq: x ≠ y guard: {T} sq_stable: SqStable(P) int_nzero: -o nequal: a ≠ b ∈  rge: x ≥ y itermConstant: "const" req_int_terms: t1 ≡ t2 rdiv: (x/y) ge: i ≥  rev_uimplies: rev_uimplies(P;Q) nat:
Lemmas referenced :  set_wf nat_plus_wf less_than_wf int-to-real_wf real_wf rlessw_wf rless_wf subtype_rel_self equal_wf set-value-type int-value-type nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf itermMultiply_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_mul_lemma int_formula_prop_wf rational-approx-property2 false_wf not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel rdiv_wf rless-int sq_stable__rless rsub_wf int-rdiv_wf intformeq_wf int_formula_prop_eq_lemma equal-wf-base int_subtype_base nequal_wf rless_functionality_wrt_implies rleq_weakening_equal radd-preserves-rless radd_wf rinv_wf2 equal-wf-T-base rmul_wf rless_functionality radd_functionality rinv-as-rdiv req_weakening real_term_polynomial itermSubtract_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 mul_bounds_1b radd-int-fractions int-rdiv-req mul_nat_plus rless-int-fractions one-mul mul-commutes mul-swap mul-distributes mul-associates mul-distributes-right int_formula_prop_le_lemma intformle_wf decidable__le multiply_functionality_wrt_le le_weakening less_than_functionality le_wf nat_plus_subtype_nat mul_bounds_1a
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality addEquality applyEquality natural_numberEquality setElimination rename hypothesisEquality dependent_functionElimination dependent_set_memberEquality cutEval equalityTransitivity equalitySymmetry independent_isectElimination intEquality unionElimination imageElimination productElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination because_Cache minusEquality inrFormation imageMemberEquality baseClosed multiplyEquality baseApply closedConclusion addLevel levelHypothesis

Latex:
\mforall{}x:\{x:\mBbbR{}|  r0  <  x\}  .  \mexists{}k:\mBbbN{}\msupplus{}.  ((r1/r(k))  <  x)



Date html generated: 2017_10_03-AM-08_51_03
Last ObjectModification: 2017_07_28-AM-07_34_22

Theory : reals


Home Index