Nuprl Lemma : rational-approx-property2

x:ℝ. ∀n:ℕ+.  (((x within 1/n) (r1/r(n))) ≤ x)


Proof




Definitions occuring in Statement :  rational-approx: (x within 1/n) rdiv: (x/y) rleq: x ≤ y rsub: y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T and: P ∧ Q real: top: Top uall: [x:A]. B[x] nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q implies:  Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A prop: rge: x ≥ y itermConstant: "const" req_int_terms: t1 ≡ t2 uiff: uiff(P;Q) rdiv: (x/y)
Lemmas referenced :  rational-approx-property-ext nat_plus_wf real_wf rminus_wf rsub_wf rational-approx_wf rabs_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf rleq_functionality_wrt_implies rleq_weakening_equal uiff_transitivity rleq_wf radd_wf radd-preserves-rleq rleq_functionality real_term_polynomial itermSubtract_wf itermAdd_wf itermMinus_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_minus_lemma real_term_value_var_lemma req-iff-rsub-is-0 req_transitivity rinv_wf2 itermMultiply_wf real_term_value_mul_lemma rmul_wf radd_functionality req_weakening rinv-as-rdiv rleq-implies-rleq rabs-as-rmax rleq-rmax
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination rename setElimination voidEquality voidElimination isect_memberEquality isectElimination lemma_by_obid sqequalRule because_Cache natural_numberEquality independent_isectElimination inrFormation independent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality independent_pairFormation computeAll

Latex:
\mforall{}x:\mBbbR{}.  \mforall{}n:\mBbbN{}\msupplus{}.    (((x  within  1/n)  -  (r1/r(n)))  \mleq{}  x)



Date html generated: 2017_10_03-AM-08_40_52
Last ObjectModification: 2017_07_28-AM-07_31_39

Theory : reals


Home Index