Nuprl Lemma : radd-preserves-rleq

[x,y,z:ℝ].  uiff(x ≤ y;(z x) ≤ (z y))


Proof




Definitions occuring in Statement :  rleq: x ≤ y radd: b real: uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T} all: x:A. B[x] itermConstant: "const" req_int_terms: t1 ≡ t2 false: False implies:  Q not: ¬A top: Top rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B subtype_rel: A ⊆B real: prop:
Lemmas referenced :  rleq_functionality_wrt_implies radd_wf radd_functionality_wrt_rleq rleq_weakening_equal rleq_weakening real_term_polynomial itermSubtract_wf itermAdd_wf itermVar_wf int-to-real_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma req-iff-rsub-is-0 less_than'_wf rsub_wf real_wf nat_plus_wf rleq_wf rminus_wf rmul_wf rleq_functionality req_transitivity itermMinus_wf itermMultiply_wf itermConstant_wf real_term_value_minus_lemma real_term_value_mul_lemma rmul-identity1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache independent_isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination natural_numberEquality sqequalRule computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality productElimination independent_pairEquality applyEquality setElimination rename minusEquality axiomEquality

Latex:
\mforall{}[x,y,z:\mBbbR{}].    uiff(x  \mleq{}  y;(z  +  x)  \mleq{}  (z  +  y))



Date html generated: 2017_10_03-AM-08_25_26
Last ObjectModification: 2017_07_28-AM-07_23_54

Theory : reals


Home Index