Nuprl Lemma : rinv-as-rdiv
∀[y:ℝ]. rinv(y) = (r1/y) supposing y ≠ r0
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
rinv: rinv(x)
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
rdiv: (x/y)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
real_term_polynomial, 
itermSubtract_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
rinv_wf2, 
int-to-real_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
req-iff-rsub-is-0, 
rmul_wf, 
req_witness, 
rneq_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
computeAll, 
lambdaEquality, 
int_eqEquality, 
hypothesisEquality, 
independent_functionElimination, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
independent_isectElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[y:\mBbbR{}].  rinv(y)  =  (r1/y)  supposing  y  \mneq{}  r0
Date html generated:
2017_10_03-AM-08_34_06
Last ObjectModification:
2017_04_04-PM-03_50_07
Theory : reals
Home
Index