Nuprl Lemma : rinv-as-rdiv

[y:ℝ]. rinv(y) (r1/y) supposing y ≠ r0


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y rinv: rinv(x) req: y int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  rdiv: (x/y) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] itermConstant: "const" req_int_terms: t1 ≡ t2 false: False implies:  Q not: ¬A top: Top uiff: uiff(P;Q) and: P ∧ Q prop:
Lemmas referenced :  real_term_polynomial itermSubtract_wf itermVar_wf itermMultiply_wf itermConstant_wf rinv_wf2 int-to-real_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_mul_lemma req-iff-rsub-is-0 rmul_wf req_witness rneq_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination natural_numberEquality hypothesis computeAll lambdaEquality int_eqEquality hypothesisEquality independent_functionElimination intEquality isect_memberEquality voidElimination voidEquality productElimination independent_isectElimination because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[y:\mBbbR{}].  rinv(y)  =  (r1/y)  supposing  y  \mneq{}  r0



Date html generated: 2017_10_03-AM-08_34_06
Last ObjectModification: 2017_04_04-PM-03_50_07

Theory : reals


Home Index