Nuprl Lemma : rleq-rmax

[x,y:ℝ].  ((x ≤ rmax(x;y)) ∧ (y ≤ rmax(x;y)))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmax: rmax(x;y) real: uall: [x:A]. B[x] and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] rleq: x ≤ y rnonneg: rnonneg(x) rmax: rmax(x;y) rsub: y rminus: -(x) radd: b accelerate: accelerate(k;f) member: t ∈ T uall: [x:A]. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: implies:  Q has-value: (a)↓ uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] real: iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q guard: {T} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top nequal: a ≠ b ∈  sq_type: SQType(T) subtype_rel: A ⊆B le: A ≤ B nat: rev_uimplies: rev_uimplies(P;Q) ge: i ≥  cand: c∧ B uiff: uiff(P;Q)
Lemmas referenced :  nat_plus_wf real_wf mul_nat_plus less_than_wf value-type-has-value set-value-type int-value-type equal_wf imax_ub nat_plus_properties decidable__le satisfiable-full-omega-tt intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf le_wf squash_wf true_wf reg-seq-list-add-as-l_sum cons_wf imax_wf nil_wf subtype_base_sq int_subtype_base equal-wf-base iff_weakening_equal map_cons_lemma map_nil_lemma l_sum_cons_lemma l_sum_nil_lemma intformand_wf itermConstant_wf itermAdd_wf itermMinus_wf int_formula_prop_and_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_minus_lemma false_wf le_functionality le_weakening div_bounds_1 less_than'_wf rsub_wf rmax_wf rleq_functionality req_weakening rmax-com
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule callbyvalueReduce sqleReflexivity introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality hypothesisEquality baseClosed independent_isectElimination intEquality lambdaEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination setElimination rename applyEquality functionExtensionality because_Cache productElimination inlFormation applyLambdaEquality unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll imageElimination minusEquality divideEquality functionEquality addLevel instantiate cumulativity universeEquality addEquality isect_memberFormation independent_pairEquality axiomEquality

Latex:
\mforall{}[x,y:\mBbbR{}].    ((x  \mleq{}  rmax(x;y))  \mwedge{}  (y  \mleq{}  rmax(x;y)))



Date html generated: 2017_10_03-AM-08_29_58
Last ObjectModification: 2017_07_28-AM-07_26_16

Theory : reals


Home Index