Nuprl Lemma : sq_stable__rv-be
∀[n:ℕ]. ∀[a,b,c:ℝ^n].  SqStable(a_b_c)
Proof
Definitions occuring in Statement : 
rv-be: a_b_c
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
rv-be: a_b_c
, 
not: ¬A
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
stable-implies-sq_stable, 
rv-be_wf, 
stable__rv-be, 
real-vec-sep_wf, 
not_wf, 
rv-between_wf, 
squash_wf, 
real-vec_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
productEquality, 
isect_memberEquality, 
voidElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c:\mBbbR{}\^{}n].    SqStable(a\_b\_c)
Date html generated:
2017_10_03-AM-11_31_16
Last ObjectModification:
2017_08_12-AM-11_42_14
Theory : reals
Home
Index