Nuprl Lemma : sq_stable__rv-be

[n:ℕ]. ∀[a,b,c:ℝ^n].  SqStable(a_b_c)


Proof




Definitions occuring in Statement :  rv-be: a_b_c real-vec: ^n nat: sq_stable: SqStable(P) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q sq_stable: SqStable(P) rv-be: a_b_c not: ¬A false: False and: P ∧ Q prop:
Lemmas referenced :  stable-implies-sq_stable rv-be_wf stable__rv-be real-vec-sep_wf not_wf rv-between_wf squash_wf real-vec_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination sqequalRule lambdaEquality dependent_functionElimination because_Cache productEquality isect_memberEquality voidElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c:\mBbbR{}\^{}n].    SqStable(a\_b\_c)



Date html generated: 2017_10_03-AM-11_31_16
Last ObjectModification: 2017_08_12-AM-11_42_14

Theory : reals


Home Index