Nuprl Lemma : stable-implies-sq_stable

[A:ℙ]. (Stable{A}  SqStable(A))


Proof




Definitions occuring in Statement :  sq_stable: SqStable(P) stable: Stable{P} uall: [x:A]. B[x] prop: implies:  Q
Definitions unfolded in proof :  or: P ∨ Q false: False squash: T not: ¬A uimplies: supposing a stable: Stable{P} prop: member: t ∈ T sq_stable: SqStable(P) implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  minimal-not-not-excluded-middle minimal-double-negation-hyp-elim not_wf or_wf false_wf stable_wf squash_wf
Rules used in proof :  unionElimination voidElimination independent_functionElimination imageElimination independent_isectElimination because_Cache functionEquality universeEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbP{}].  (Stable\{A\}  {}\mRightarrow{}  SqStable(A))



Date html generated: 2017_09_29-PM-05_47_24
Last ObjectModification: 2017_08_04-PM-05_29_53

Theory : call!by!value_2


Home Index