Nuprl Lemma : stable-implies-sq_stable
∀[A:ℙ]. (Stable{A} 
⇒ SqStable(A))
Proof
Definitions occuring in Statement : 
sq_stable: SqStable(P)
, 
stable: Stable{P}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
or: P ∨ Q
, 
false: False
, 
squash: ↓T
, 
not: ¬A
, 
uimplies: b supposing a
, 
stable: Stable{P}
, 
prop: ℙ
, 
member: t ∈ T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
minimal-not-not-excluded-middle, 
minimal-double-negation-hyp-elim, 
not_wf, 
or_wf, 
false_wf, 
stable_wf, 
squash_wf
Rules used in proof : 
unionElimination, 
voidElimination, 
independent_functionElimination, 
imageElimination, 
independent_isectElimination, 
because_Cache, 
functionEquality, 
universeEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbP{}].  (Stable\{A\}  {}\mRightarrow{}  SqStable(A))
Date html generated:
2017_09_29-PM-05_47_24
Last ObjectModification:
2017_08_04-PM-05_29_53
Theory : call!by!value_2
Home
Index