Nuprl Lemma : stable_wf
∀[A:ℙ]. (Stable{A} ∈ ℙ)
Proof
Definitions occuring in Statement :
stable: Stable{P}
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
stable: Stable{P}
,
uimplies: b supposing a
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
isect_wf,
not_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
lambdaEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
Error :universeIsType,
universeEquality
Latex:
\mforall{}[A:\mBbbP{}]. (Stable\{A\} \mmember{} \mBbbP{})
Date html generated:
2019_06_20-AM-11_15_08
Last ObjectModification:
2018_09_26-AM-10_43_13
Theory : core_2
Home
Index