Nuprl Lemma : stable_wf
∀[A:ℙ]. (Stable{A} ∈ ℙ)
Proof
Definitions occuring in Statement : 
stable: Stable{P}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
stable: Stable{P}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
isect_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[A:\mBbbP{}].  (Stable\{A\}  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-AM-11_15_08
Last ObjectModification:
2018_09_26-AM-10_43_13
Theory : core_2
Home
Index