Nuprl Lemma : sq_stable_ex_nonzero

n:ℕ. ∀a:ℕn ⟶ ℝ.  SqStable(∃i:ℕn. a[i] ≠ r0)


Proof




Definitions occuring in Statement :  rneq: x ≠ y int-to-real: r(n) real: int_seg: {i..j-} nat: sq_stable: SqStable(P) so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uall: [x:A]. B[x] nat:
Lemmas referenced :  sq_stable_ex_rneq int_seg_wf int-to-real_wf real_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality isectElimination natural_numberEquality setElimination rename hypothesis because_Cache functionEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}.    SqStable(\mexists{}i:\mBbbN{}n.  a[i]  \mneq{}  r0)



Date html generated: 2017_10_03-AM-09_01_00
Last ObjectModification: 2017_06_16-AM-11_48_16

Theory : reals


Home Index