Nuprl Lemma : sq_stable_ex_nonzero
∀n:ℕ. ∀a:ℕn ⟶ ℝ.  SqStable(∃i:ℕn. a[i] ≠ r0)
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
sq_stable: SqStable(P)
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
Lemmas referenced : 
sq_stable_ex_rneq, 
int_seg_wf, 
int-to-real_wf, 
real_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
functionEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}.    SqStable(\mexists{}i:\mBbbN{}n.  a[i]  \mneq{}  r0)
Date html generated:
2017_10_03-AM-09_01_00
Last ObjectModification:
2017_06_16-AM-11_48_16
Theory : reals
Home
Index