Nuprl Lemma : sq_stable_ex_rneq

n:ℕ. ∀a,b:ℕn ⟶ ℝ.  SqStable(∃i:ℕn. a[i] ≠ b[i])


Proof




Definitions occuring in Statement :  rneq: x ≠ y real: int_seg: {i..j-} nat: sq_stable: SqStable(P) so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] sq_stable: SqStable(P) implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] so_apply: x[s] squash: T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top rless: x < y sq_exists: x:{A| B[x]} nat_plus: +
Lemmas referenced :  squash_wf exists_wf int_seg_wf rneq_wf real_wf nat_wf exists-rneq-iff rless_wf int-to-real_wf rsum_wf subtract_wf rabs_wf rsub_wf subtract-add-cancel nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf lelt_wf sq_stable__rless nat_plus_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename because_Cache hypothesis sqequalRule lambdaEquality applyEquality functionExtensionality hypothesisEquality functionEquality addLevel imageElimination dependent_functionElimination productElimination independent_functionElimination imageMemberEquality baseClosed levelHypothesis promote_hyp dependent_set_memberEquality independent_pairFormation unionElimination independent_isectElimination approximateComputation dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality addEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}.    SqStable(\mexists{}i:\mBbbN{}n.  a[i]  \mneq{}  b[i])



Date html generated: 2017_10_03-AM-09_00_42
Last ObjectModification: 2017_06_16-AM-11_47_09

Theory : reals


Home Index