Nuprl Lemma : sq_stable_rneq
∀x,y:ℝ.  SqStable(x ≠ y)
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
Lemmas referenced : 
sq_stable__rneq, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis
Latex:
\mforall{}x,y:\mBbbR{}.    SqStable(x  \mneq{}  y)
Date html generated:
2018_05_22-PM-01_32_38
Last ObjectModification:
2018_05_17-AM-09_13_07
Theory : reals
Home
Index