Nuprl Lemma : sq_stable_rneq

x,y:ℝ.  SqStable(x ≠ y)


Proof




Definitions occuring in Statement :  rneq: x ≠ y real: sq_stable: SqStable(P) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T
Lemmas referenced :  sq_stable__rneq real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis

Latex:
\mforall{}x,y:\mBbbR{}.    SqStable(x  \mneq{}  y)



Date html generated: 2018_05_22-PM-01_32_38
Last ObjectModification: 2018_05_17-AM-09_13_07

Theory : reals


Home Index