Nuprl Lemma : sq_stable__rneq
∀x,y:ℝ.  SqStable(x ≠ y)
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
real_wf, 
decidable__lt, 
sq_stable__ex_nat_plus, 
rneq-iff, 
nat_wf, 
subtract_wf, 
absval_wf, 
less_than_wf, 
nat_plus_wf, 
exists_wf, 
rneq_wf, 
sq_stable_functionality
Rules used in proof : 
because_Cache, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
rename, 
setElimination, 
applyEquality, 
natural_numberEquality, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}x,y:\mBbbR{}.    SqStable(x  \mneq{}  y)
Date html generated:
2018_05_22-PM-01_21_18
Last ObjectModification:
2018_05_21-AM-00_06_44
Theory : reals
Home
Index