Nuprl Lemma : sq_stable__rneq

x,y:ℝ.  SqStable(x ≠ y)


Proof




Definitions occuring in Statement :  rneq: x ≠ y real: sq_stable: SqStable(P) all: x:A. B[x]
Definitions unfolded in proof :  rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q implies:  Q so_apply: x[s] nat: subtype_rel: A ⊆B real: so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  real_wf decidable__lt sq_stable__ex_nat_plus rneq-iff nat_wf subtract_wf absval_wf less_than_wf nat_plus_wf exists_wf rneq_wf sq_stable_functionality
Rules used in proof :  because_Cache productElimination dependent_functionElimination independent_functionElimination rename setElimination applyEquality natural_numberEquality lambdaEquality sqequalRule hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}x,y:\mBbbR{}.    SqStable(x  \mneq{}  y)



Date html generated: 2018_05_22-PM-01_21_18
Last ObjectModification: 2018_05_21-AM-00_06_44

Theory : reals


Home Index