Nuprl Lemma : rneq-iff

x,y:ℝ.  (x ≠ ⇐⇒ ∃n:ℕ+4 < |(x n) n|)


Proof




Definitions occuring in Statement :  rneq: x ≠ y real: absval: |i| nat_plus: + less_than: a < b all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a subtract: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] rneq: x ≠ y rless: x < y iff: ⇐⇒ Q and: P ∧ Q implies:  Q or: P ∨ Q sq_exists: x:{A| B[x]} exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] real: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: nat_plus: + satisfiable_int_formula: satisfiable_int_formula(fmla) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b decidable: Dec(P) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q nat: le: A ≤ B gt: i > j
Lemmas referenced :  absval_unfold subtract_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf nat_plus_properties add-is-int-iff full-omega-unsat intformand_wf intformless_wf itermConstant_wf itermSubtract_wf itermVar_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_wf false_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot decidable__lt intformnot_wf itermMinus_wf int_formula_prop_not_lemma int_term_value_minus_lemma absval_wf or_wf sq_exists_wf nat_plus_wf absval_lbound le_wf subtract-is-int-iff exists_wf nat_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation sqequalHypSubstitution unionElimination thin setElimination rename dependent_pairFormation hypothesisEquality sqequalRule cut introduction extract_by_obid isectElimination applyEquality because_Cache hypothesis minusEquality natural_numberEquality equalityElimination productElimination independent_isectElimination lessCases isect_memberFormation sqequalAxiom isect_memberEquality voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp baseApply closedConclusion approximateComputation lambdaEquality int_eqEquality intEquality dependent_functionElimination instantiate cumulativity dependent_set_memberEquality addEquality inlFormation dependent_set_memberFormation inrFormation

Latex:
\mforall{}x,y:\mBbbR{}.    (x  \mneq{}  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}\msupplus{}.  4  <  |(x  n)  -  y  n|)



Date html generated: 2017_10_03-AM-08_26_57
Last ObjectModification: 2017_08_30-PM-03_15_44

Theory : reals


Home Index