Nuprl Lemma : absval_unfold

[x:ℤ]. (|x| if (-1) < (x)  then x  else (-x))


Proof




Definitions occuring in Statement :  absval: |i| uall: [x:A]. B[x] less: if (a) < (b)  then c  else d minus: -n natural_number: $n int: sqequal: t
Definitions unfolded in proof :  absval: |i| uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb ifthenelse: if then else fi  assert: b subtype_rel: A ⊆B le: A ≤ B decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m
Lemmas referenced :  value-type-has-value int-value-type subtype_base_sq int_subtype_base lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base uiff_transitivity assert_wf bnot_wf not_wf assert_of_bnot not_functionality_wrt_uiff not-lt-2 less-iff-le add_functionality_wrt_le add-associates zero-add add-commutes le-add-cancel2 decidable__int_equal false_wf not-equal-2 add-swap add-zero le-add-cancel condition-implies-le minus-add minus-zero
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality instantiate cumulativity dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination axiomSqEquality Error :universeIsType,  natural_numberEquality lambdaFormation unionElimination equalityElimination productElimination lessCases Error :inhabitedIsType,  isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination minusEquality because_Cache dependent_pairFormation promote_hyp addEquality applyEquality lambdaEquality

Latex:
\mforall{}[x:\mBbbZ{}].  (|x|  \msim{}  if  (-1)  <  (x)    then  x    else  (-x))



Date html generated: 2019_06_20-AM-11_24_18
Last ObjectModification: 2018_09_26-AM-10_58_21

Theory : arithmetic


Home Index